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ABSTRACT

On-chip single-photon sources with high repetition rates are a fundamental block for quantum photonics and can enable applications such
as high-speed quantum communication or quantum information processing. Ideally, such single-photon sources require a large on-chip pho-
ton extraction decay rate, especially over a broad spectral range, but this goal has remained elusive so far. Current approaches implemented
to enhance the spontaneous emission rate include photonic crystals, optical cavities, metallic nanowires, and metamaterials. These
approaches either have a strong reliance on the frequency resonance mechanisms, which unavoidably suffer from the issue of narrow work-
ing bandwidth, or are limited by poor outcoupling efficiency. Here, we propose a feasible scheme to enhance the on-chip photon extraction
decay rate of quantum emitters through the tilting of the optical axis of hyperbolic metamaterials with respect to the end-facet of nanofibers.
The revealed scheme is applicable to arbitrarily orientated quantum emitters over a broad spectral range extending up to �80 nm for visible
light. This finding relies on the emerging unique feature of hyperbolic metamaterials if their optical axis is judiciously tilted. Hence, their sup-
ported high-k (i.e., wavevector) hyperbolic eigenmodes, which are intrinsically confined inside them if their optical axis is un-tilted, can now
become momentum-matched with the guided modes of nanofibers, and more importantly, they can efficiently couple into nanofibers almost
without reflection.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5141275

The on-chip source of single photons is of extreme importance
for the exploration and development of integrated quantum informa-
tion technology, including quantum cryptography,1 quantum compu-
tation,2,3 and quantum communication,4–6 since existing quantum
networks transmit information through single photons. One of the
key characteristics of on-chip single-photon sources is the repetition
rate.7 This is because a higher repetition rate allows higher bit rates in

quantum communication and faster readout of stationary qubits.8–11

To be specific, the repetition rate is determined by the photon extrac-
tion decay rate of quantum emitters into nanofibers, which is equal to
the product of emitter’s spontaneous emission rate and the coupling
efficiency of excited photons into nanofibers or waveguides. As such, it
is highly desirable to enhance the on-chip photon extraction decay
rate for single-photon sources, especially over a broad spectral range.
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There are extensive approaches to enhancing the spontaneous
emission rate by using, for example, photonic crystals, optical cavities,
metallic nanowires, and metamaterials.12–29 However, these
approaches either have a strong reliance on the frequency resonance
mechanism, which unavoidably suffers from the issue of narrow work-
ing bandwidth or are limited by the poor outcoupling efficiency.
Recently, the photonic hypercrystals, which combine the large broad-
band photonic density-of-states provided by hyperbolic metamaterials
with the high light-scattering efficiency of photonic crystals, are
reported to be a promising platform for the enhancement of photon
extraction decay rate into free space over a broad visible spectral range
(e.g., 580–700nm).30 However, the realization of large on-chip photon
extraction decay rates over a broad spectral range still remains an
open challenge.

To be specific, only a few proposals have been put forward to
enhance the on-chip photon extraction decay rate by using, for
example, tapered nanofibers, metallic structures that support gap
surface plasmons integrated with phase-matched nanofibers, and
hyperbolic metamaterials.21–37 These proposals either have a weak
enhancement of the photon extraction decay rate or can work only at
a narrow frequency range,21–37 due to the low spontaneous emission
rate,21–26 the poor outcoupling efficiency,29–36 or the phase matching
condition between the excited gap surface plasmons and the guid-
ance modes of nanofibers.27,28 To clearly illustrate this issue, those
proposals based on hyperbolic metamaterials are briefly analyzed as
a typical example below. For hyperbolic metamaterials, placing a
quantum emitter in their vicinity generally provides a drastic
enhancement of the spontaneous emission rate over a broad spectral
range, due to their broadband large photonic density-of-states.37–43

However, their large photonic density-of-states cannot directly lead
to a high photon extraction decay rate, due to the low coupling effi-
ciency, which originates from the fact that the supported high-k
(i.e., wavevector) eigenmodes generally cannot propagate to the
far field but are intrinsically confined inside the hyperbolic metama-
terials.37–43 As such, the hyperbolic metamaterials, including
metal-dielectric multilayered structures29 and those that are nano-
patterned or adiabatically tapered,31–33 are thought to be less
practical to achieve the broadband enhancement of on-chip photon
extraction decay rates.

Here, we introduce a feasible scheme where the above intrinsic
limitations in hyperbolic metamaterials can be overcome, thus
enabling a flexible enhancement of the on-chip photon extraction
decay rate over a broad spectral range. To be specific, such a capabil-
ity is enabled by the judicious tilting of the optical axis of hyperbolic
metamaterials with respect to the end-facet of nanofibers; see the
structural schematic in Fig. 1(a). Due to the tilted optical axis, the
high-k eigenmodes in the hyperbolic metamaterials can become
momentum-matched with the guided modes in nanofibers, and more
importantly, their reflection would be suppressed at the interface
between hyperbolic metamaterials and nanofibers. In other words,
the high-k eigenmodes can now safely couple into nanofibers. This
way, the tilted hyperbolic metamaterials here are distinctly different
from un-tilted hyperbolic metamaterials,29–33 and they become prac-
tical for the broadband enhancement of on-chip single-photon
extraction. We highlight that due to the advancement of nanotech-
nology, it is now feasible to implement tilted hyperbolic metamateri-
als in experiments.44–47 Another advantage is that the proposed

scheme is applicable for quantum emitters with arbitrary orientation.
Our work thus represents a vital step toward the implementation of
spectrally broad single-photon sources with high repetition rates for
on-chip quantum networks.

We start with the analysis of the corresponding underlying mech-
anism from the perspective of the isofrequency contour of eigenmodes
in hyperbolic metamaterials. For the hyperbolic metamaterial, its opti-
cal axis has an angle h with respect to the normal vector n̂ (n̂jjẑ) of
the end-facet (parallel to the x-y plane) of nanofibers [Fig. 1(a)]. The
fabrication of the proposed structure in Fig. 1(a) should be feasible in
experiments and compatible with current planar technology by follow-
ing, for example, the technique discussed in Figs. S2–S3 (see the
supplementary material) and the technique for the fabrication of tilted
hyperbolic metamaterials developed recently in Refs. 44–47. The
hyperbolic metamaterial has a relative permittivity of ½ejj; ejj; e?�,
where ejj and e? are the components parallel and perpendicular to the
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FIG. 1. Schematic of enhancing the on-chip single-photon extraction decay rate via
tilted hyperbolic metamaterials. (a) Structural setup. A quantum emitter, modeled by
a dipole, is positioned very close to a hyperbolic metamaterial, which is integrated
with a nanofiber and whose optical axis is tilted by an angle of h with respect to the
normal vector n̂ ¼ �ẑ of the interface. The fabrication of the proposed structure in
Fig. 1(a) should be feasible in experiments and compatible with current planar tech-
nology by following, for example, the technique discussed in this paper (see, for
example, Figs. S2 and S3) and the technique for the fabrication of tilted hyperbolic
metamaterials developed recently in Refs. 44–47. (b, c) Isofrequency contour of
transparent hyperbolic metamaterials with (b) h ¼ 0 and (c) h! uc , where uc is
the angle between the optical axis and the asymptotic line of hyperbolic isofre-
quency contours. The colored or shaded region in (b, c) has jReðkx=k0Þj � nSi3N4 ;
the excited hyperbolic modes inside this region in (c) are able to efficiently couple
into the nanofiber almost without reflection.
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optical axis, respectively. This way, the isofrequency contour in the x-z
plane can be described by

ejjsin
2hþ e?cos

2h
� �

k2z þ 2 ejj � e?ð Þsinhcoshkxkz

þ ejjcos
2hþ e?sin

2h
� �

k2x ¼ k20ejje?; (1)

where kx and kz are the components of wavevector k, parallel and per-
pendicular to the end-facet of nanofibers [Fig. 1(a)], respectively;
k ¼ jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
; k0 ¼ x=c; and c is the light speed in free space.

Below, we set ReðejjÞ > 0 and Re e?ð Þ < 0.
We emphasized that the term related to k2z in Eq. (1) disappears

if ejjsin
2hþ e?cos2h ¼ 0 or h ¼ uc, where uc ¼ tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e?=ejj

p
Þ is

the critical angle between the optical axis and the asymptotic line of
hyperbolic isofrequency contours [Fig. 1(b)]. As a result, there is
always only the unique solution of kz for an arbitrary value of kx in
Eq. (1) if h ¼ uc [Fig. 1(c)]. In contrast, there is always two solutions
of kz for an arbitrary value of kx if h ¼ 0 [Fig. 1(b)].

The unique feature of hyperbolic isofrequency contour in
Fig. 1(c) can lead to two prominent ways to enhance the on-chip
photon extraction decay rate in Fig. 1(a). First, the supported high-k
(i.e., k� k0) hyperbolic modes become to have a small value of kx if
h ¼ uc. To be specific, we have jReðkx=k0Þj � nfiber even if k!1 in
the colored region in Fig. 1(c), where nfiber is the refractive index of
the constituent material for the nanofiber [e.g., if Si3N4 is adopted in
Fig. 1(a), nfiber ¼ nSi3N4 ]. Then from the phase matching condition at
the end-facet of nanofibers, these high-k hyperbolic modes now have
the chance to couple into the guided modes of the nanofiber. In
contrast, most high-k hyperbolic modes in Fig. 1(b) have
jReðkx=k0Þj > nfiber. They are thus intrinsically confined within the
un-tilted metamaterials and cannot couple into the nanofiber.

Second, the reflection of hyperbolic modes, including those high-
k modes, at the end-facet of the nanofiber will be completely sup-
pressed. This is because for a determined kx in Fig. 1(c), there is only
one hyperbolic mode, which corresponds to the incident hyperbolic
mode, supported by the metamaterial. In other words, there will be no
reflected propagating hyperbolic mode, since the reflected fields are
evanescent with respect to the interface. This unavoidably leads to a
high transformation of arbitrary incident hyperbolic modes in the col-
ored region of Fig. 1(c) into the guided modes of nanofibers. In con-
trast, for the un-tilted hyperbolic metamaterials in Fig. 1(b), due to the
existence of reflected propagating hyperbolic modes, the reflection of
an incident hyperbolic mode (including the low-k ones) cannot be
avoided and is significant for high-kmodes.

From the above analyses, it is then straightforward to use the
emerging unique feature of tilted hyperbolic metamaterials in Fig. 1(c)
to enhance the on-chip photon extraction decay rate. This can be
done, for example, simply by positioning a quantum emitter very close
to a thin slab of the hyperbolic metamaterial, which is integrated with
a nanofiber [Fig. 1(a)]. Here we focus on the weak coupling regime,
and the quantum emitter is modeled by a dipole source8,29,48 (see the
supplementary material). Since the hyperbolic metamaterial has a
broadband, extremely large photonic density-of-states,37–43 the emitter
has a large spontaneous emission rate ctotal or a large Purcell enhance-
ment ctotal=c0 (e.g., >10

5 in Fig. S4; see the supplementary material),
where c0 is the spontaneous emission rate of the quantum emitter in
free space.

If the material loss is neglected, the on-chip photon extraction
decay rate cfiber at a specific wavelength in Fig. 1(a) can be extremely
large, and in principle, it can reach a value having the same order of
magnitude as ctotal (i.e., cfiber � ctotal). This is enabled by the revealed
capability of tilted hyperbolic metamaterials to efficiently transform
the excited hyperbolic modes in the colored region of Fig. 1(c) into the
guided modes of the nanofibers. It is then reasonable to expect cfiber to
be quite large (e.g., cfiber=c0 > 105) in a broad spectral range, if the
tilted hyperbolic metamaterial is transparent.

However, the material loss is unavoidable in practical passive
hyperbolic metamaterials. We note that the realistic material loss can
lead to a large reduction of cfiber, since the energy of excited high-k
modes will be largely degraded before they arrive at the end-facet of
nanofibers. We then proceed to the study of cfiber in Figs. 2 and 3, with
the consideration of realistic material losses in tilted hyperbolic meta-
materials. Figures 2 and 3 show that we can still achieve cfiber � co
(e.g., cfiber > 100co) over a broad spectral range, although we generally
have cfiber � ctotal, instead of cfiber � ctotal, for realistic cases (see Fig.
S4 in the supplementary material).

We begin our numerical study of cfiber at a specific wavelength in
Fig. 2 (see the computation detail of cfiber in the supplementary
material). For hyperbolic metamaterials, they are effectively con-
structed through alternating layers of metals and dielectrics. As a con-
ceptual demonstration, the experimental data of permittivity of silver
and silica49 are adopted, and the metallic filling fraction is 50%
(see the detailed strategy of structural design in the supplementary
material). Due to the dispersion of constituent materials (e.g., metal),
the critical angle ucðkÞ of the designed hyperbolic metamaterial is sen-
sitive to the wavelength [Fig. 2(a)].

Figure 2(b) shows cfiber as a function of the tilted angle h. The
working wavelength (in free space) of k1 ¼ 685 nm is chosen for illus-
tration, since it is within the radiation spectrum in which many of the
currently considered quantum emitters operate, such as the range of
575–785nm for the nitrogen-vacancy (NV) center in nano-dia-
monds.50 The maximal cfiber � 460c0 appears for the quantum emitter
oriented along the z direction if h ¼ ucðk1Þ in Fig. 2(b), where we
have ucðk1Þ ¼ 36	 from Fig. 2(a). Correspondingly, if h ¼ ucðk1Þ, we
find significant radiation fields being extracted into the nanofiber at k1
in Fig. 2(c). As complementary information, cfiber is also studied for
the quantum emitter oriented along the x or y direction in Fig. S4 (see
the supplementary material). Importantly, the large value of cfiber
> 400c0 is always achievable if h ¼ ucðk1Þ, independent of the orien-
tation of quantum emitters. From Fig. 2 and Fig. S4, it is reasonable to
argue that the proposed strategy to enhance cfiber via tilted (transpar-
ent) hyperbolic metamaterials in Fig. 1 works well for scenarios with
reasonable amounts of loss.

Moreover, the proposed strategy in Fig. 1 is also applicable for
the realistic lossy case over a broad spectral range, as shown in Fig. 3.
To illustrate this point, Fig. 3 shows cfiber as a function of the wave-
length (k 2 ½575 785� nm) and the tilted angle h. If h ¼ ucðk1Þ,
cfiber > 100c0 can be achieved over a continuous wavelength range
with a bandwidth of �80nm (Fig. 3). Note that the relative band-
width, namely the bandwidth normalized by the central working
wavelength, reaches 12% ¼ 80 nm

k1
.

On the other hand, it is noted that the feature of cfiber as a func-
tion of wavelength at h ¼ uc k1ð Þ61o is similar to that at h ¼ uc k1ð Þ
in Fig. 3. Such a phenomenon indicates that, due to materials losses,
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the hyperbolic mode with a finite large k (� kmax), instead of the one
with extremely large k (>kmax), mainly contributes to the enhance-
ment of cfiber. This way, the requirement of h ¼ ucðk1Þ in Fig. 1(c),
which is applied to achieve large cfiber over a broad spectral range
around k1, is not stringent for the realistic lossy case in Fig. 3. In other
words, there is a certain tolerance on the choice of the tilted angle for
the lossy cases. Such a loose requirement on the tilted angle in Fig. 3
may facilitate the practical implementation of the proposed structure
in Fig. 1.

Last but not least, the permittivity of hyperbolic metamaterials
can be described by the effective medium theory in an approximate
way51–53 or by the Bloch theorem in an accurate way with the consid-
eration of their spatial dispersion.54,55 Since cfiber for the realistic lossy
cases is mainly related to the excited hyperbolic modes with k � kmax,
it is reasonable and convenient to apply the effective medium theory
in Figs. 2 and 3. To theoretically confirm this, for hyperbolic metama-
terials, Fig. S5 (see the supplementary material) discusses the influence
of their realistic structures or their spatial dispersion on cfiber; to be
specific, such an influence would be effectively suppressed if the peri-
odicity of layered hyperbolic metamaterials is small enough. In addi-
tion, we show in Table I the direct comparison of photon extraction
decay rate into free space or into nanofibers by using hyperbolic meta-
materials between previous studies and this work. From Table I, it is
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reasonable to argue that tilted hyperbolic metamaterials can be a
promising platform for the enhancement of the on-chip photon
extraction decay rate of quantum emitters over a broad spectral range.

In summary, we have proposed a simple yet universal scheme to
enhance cfiber in a broad spectral range (e.g., a bandwidth of �80nm
in the visible regime) via tilted hyperbolic metamaterials. For tilted
hyperbolic metamaterials, we let the tilted angle h of their optical axis
be equal to their critical angle uc. Such a judicious geometrical tilting
gives rise to some unique features of the hyperbolic isofrequency con-
tour; in particular, it allows the excited high-k hyperbolic modes to
efficiently couple into the guided modes of the nanofiber almost with-
out reflection. Two further advantages of the proposed scheme are the
loose requirement on the tilted angle and the orientation of quantum
emitters, which may facilitate its practical implementation. Our work
also triggers many interesting open questions. As a prototypical exam-
ple, if a quantum emitter is positioned close to a realistic hyperbolic
metamaterial, the possibility to realize cfiber with its value in the same
order of magnitude as ctotal, namely, the simultaneous realization of an
extremely large spontaneous emission rate and a high coupling effi-
ciency via hyperbolic metamaterials, still remains elusive.

SUPPLEMENTARY MATERIAL

The supplementary material contains 6 sections, including criti-
cal angle uc of hyperbolic isofrequency contours, numerical computa-
tion details for ctotal and cfiber, structural design of hyperbolic
metamaterials and effective medium theory, dependence of ctotal and
cfiber on the orientation of quantum emitters, effective permittivity of
hyperbolic metamaterials via Bloch theorem, and more discussion on
ctotal.
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